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Abstract

Background—Genome-wide association studies (GWAS) in European populations have 

identified genetic risk variants associated with multiple myeloma (MM).

Methods—We performed association testing of common variation in eight regions in 1,264 MM 

patients and 1,479 controls of European ancestry (EA) and 1,305 MM patients and 7,078 controls 

of African ancestry (AA) and conducted a meta-analysis to localize the signals, with epigenetic 

annotation used to predict functionality.

Results—We found that variants in 7p15.3, 17p11.2, 22q13.1 were statistically significantly 

(p<0.05) associated with MM risk in AAs and EAs and the variant in 3p22.1 was associated in 

EAs only. In a combined AA-EA meta-analysis, variation in five regions (2p23.3, 3p22.1, 7p15.3, 

17p11.2, 22q13.1) was statistically signficantly associated with MM risk. In 3p22.1, the correlated 

variants clustered within the gene body of ULK4. Correlated variants in 7p15.3 clustered around 

an enhancer at the 3′ end of the CDCA7L transcription termination site. A missense variant at 

17p11.2 (rs34562254, Pro251Leu, OR=1.32, p=2.93×10−7) in TNFRSF13B, encodes a 

lymphocyte-specific protein in the tumor necrosis factor receptor family that interacts with the NF-

κB pathway. SNPs correlated with the index signal in 22q13.1 cluster around the promoter and 

enhancer regions of CBX7.

Conclusions—We found that reported MM susceptibility regions contain risk variants important 

across populations supporting the use of multiple racial/ethnic groups with different underlying 

genetic architecture to enhance the localization and identification of putatively functional alleles.

Impact—A subset of reported risk loci for multiple myeloma have consistent affects across 

populations and are likely to be functional.
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INTRODUCTION

Multiple myeloma (MM), a neoplasm of malignant plasma cells arising in bone marrow, 

comprises 1.9% of all cancer deaths and 20% of all hematological cancer deaths 

(www.seer.ca.gov)(1). MM is uncommon, with an age-adjusted incidence rate of 

7.9/100,000 in males and 5.1/100,000 in females in the U.S. in 2012 (www.seer.cancer.gov)

(1). Clinical manifestations range from asymptomatic (smoldering) myeloma to active 

symptomatic disease (2). There is a 2- to 3- fold higher risk of disease in African Americans 

compared to individuals of European origin and a 2-fold increased risk in relatives of MM 

cases (3, 4), suggesting a heritable component to this disease.

A genome-wide association study (GWAS) of 1,675 cases and 5,903 controls from a 

Northern European population identified two genome-wide significant novel loci associated 

with MM risk at 3p22.1 (rs1052501) and 7p15.3 (rs4487645), as well as a suggestive 

association (p~10−7) at 2p23.3 (rs6746082) (5). In a second GWAS of 4,692 cases and 

10,990 controls from the United Kingdom and Germany, four additional genome-wide 

significant risk loci were identified at 3q26.2 (rs10936599), 6p21.33 (rs2285803), 17p11.2 

(rs4273077), and 22q13.1 (rs877529)(6). For these common risk variants, the per allele odds 

ratios (OR) and risk allele frequencies (RAF) ranged from 1.19 to 1.39, and 0.11 to 0.76, 

respectively. In a European study involving a large multiple myeloma consortium, three of 

these regions (2p23.3, 3p22.1 and 7p15.3) replicated at p<0.05 (7). In the most recent 

published GWAS, the 2q12.3 region was implicated in MM risk in a discovery set of 972 

cases and 1,064 controls of European origin and was replicated in a similar set of 297 cases 

(8). This study also replicated six of the seven known regions for MM risk (8).

For common susceptibility alleles shared across populations, underlying genetic differences 

in linkage disequilibrium (LD) across racial/ethnic groups can be leveraged to more 

precisely localize markers of disease risk (9). In the present study, we examined MM 

susceptibility regions for individuals from North America of African (AA) and European 

(EA) ancestry and conducted GWAS plus imputation-based fine-mapping in an attempt to 

identify putative functional variants that better capture risk in these populations.

MATERIALS AND METHODS

Ethics Statement

All studies had approval from their respective Institutional Review Boards according to the 

Declaration of Helsinki Ethical Principles for Medical Research Involving Human Subjects 

in 1964. Signed informed consent was obtained from all participants at the time of blood/

saliva collection. The participants in this study were recruited at multiple sites described 

below.
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African Ancestry Study Participants

Study participants included 1,150 AA patients with MM enrolled in the phase 1 collection 

(through 11/11/2014) of the African American Mulitple Myeloma Study (AAMMS), from 

11 clinical centers (Winship Cancer Institute and Grady Memorial Hospital at Emory 

University, MD Anderson Cancer Center at University of Texas, Robert H. Lurie 

Comprehensive Cancer Center at Northwestern University, Sidney Kimmel Comprehensive 

Cancer Center at Johns Hopkins University, Karmanos Cancer Institute at Wayne State 

University, University of Chicago Comprehensive Cancer Center, Siteman Cancer Center at 

Washington University, St. John Providence Health System, Norris Comprehensive Cancer 

Center at the University of Southern California (USC) and the Henry Ford Health System) 

and four National Cancer Institute (NCI) Surveillance, Epidemiology, and End Results 

(SEER) cancer registries (California, Detroit [excluding patients from Karmanos Cancer 

Center and Henry Ford Hospital], New Jersey, and Louisiana). USC is the data coordinating 

center that receives, processes and maintains all de-identified clinical and questionnaire data 

and biospecimens. English speaking AA patients diagnosed with active or smoldering MM 

at age 20 years or older were eligible for enrollment. Forty-three AA MM patients were 

included from the Multiethnic Cohort (MEC), a cohort of 215,251 men and women aged 

45–75 years at recruitment from Hawaii and California (10). Incident cancer cases were 

identified through linkage with the Hawaii Tumor Registry and/or the Los Angeles County 

Cancer Surveillance Program; both NCI-funded SEER registries. An additional 28 AA MM 

patients from the University of California at San Francisco (UCSF) study were also 

included. That study enrolled 370 MM patients of all races treated for MM at UCSF 

between 1989 and 2010 (11). Additional details of the study, which also contributed patients 

to the EA GWAS meta-analysis, can be found in Supplementary Methods. Finally, 84 AA 

MM patients’ samples, collected from the Multiple Myeloma Research Consortium 

(MMRC) institutions and shipped to the MMRC Tissue Bank at the Mayo Clinic Scottsdale, 

were provided (2).

A comparison set of 7,078 multiple myeloma-free participants (4,447 males and 2,631 

females) from the African Ancestry Prostate Cancer GWAS Consortium (AAPC, consisting 

of 13 independent studies) and from a breast cancer GWAS of AA women (AABC, 

consisting of nine independent studies) were used as controls (12, 13). Further details on the 

contributing studies are provided in the Supplementary Methods.

Genotyping and Imputation—DNA was extracted at the USC Genomics Core 

Laboratory from buffy coat or saliva samples from the 1,150 AAMMS and 43 MEC patients. 

For the 28 UCSF patients, DNA was extracted from white blood cells harvested after 

mobilization of stem cells with granulocyte colony-stimulating factor in preparation for 

autologous bone marrow transplant and shipped to USC for genotyping. For the 84 MMRF 

patients, DNA was extracted from ACK-lysed peripheral blood samples using a Puregene kit 

(Qiagen). All 1,305 samples were then genotyped using the Illumina HumanCore GWAS 

array at the USC Genomics Core Laboratory.

Controls were previously genotyped using the Illumina 1M-Duo (Illumina Inc., San Diego, 

California, USA). Quality control (QC) steps for the controls are described in detail 
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elsewhere (12, 13). Among cases, 37,046 single nucleotide polymorphisms (SNP) and 11 

samples with a call rate < 98% were removed. Cases were further excluded based on the 

following criteria: (i) unexpected replicates (n=14); (ii) first or second degree relatives 

(n=2); (iii) self-reported sex conflicting with sex estimated by X chromosome 

heterozygosity or XXY sex chromosome aneuploidy (n=6). A subset of controls (n=100) 

were genotyped on both arrays for QC purposes; any SNP that was discordant between the 

two platforms was removed (n=3,134). To minimize error due to platform differences, only 

SNPs genotyped in both cases and controls were included for imputation (n=188,835). Prior 

to merging the case and control genotype data, variant alleles were translated to the 1000 

Genomes Project (1KGP) forward strand and base pair positions were mapped to GRCh37/

hg19. Imputation to 1KGP (March 2012 release) was conducted for 500 Kb regions around 

the eight previously identified risk variants and SNPs with INFO>0.80 and minor allele 

frequency (MAF)>0.01 were included in the analysis. The number of genotyped and 

imputed SNPs by info score (<0.8 and >0.8) for each region is provided in Supplementary 

Table 1.

Statistical Analysis—Principal components (PC) were calculated with EIGENSTRAT 

v5.0 (14) using 19,070 common SNPs (MAF>0.05) with low pairwise LD (r2<0.20) selected 

from the 188,835 overlapping genotyped SNPs in cases and controls. Unconditional logistic 

regression was performed adjusting for age (at diagnosis for cases and at blood draw for 

controls), sex, and PC1-5, as these PCs captured the variability of the study sample (results 

were similar when adjusted for 10 PCs). The dosage effects of the risk allele assuming an 

additive genetic model were analyzed in a one degree-of-freedom likelihood ratio test 

implemented in SNPTEST v2.4.0 (15).

European Ancestry Study Participants

Study participants included 1,264 EA MM cases and 1,479 EA controls from four 

genotyping centers: USC, UCSF (11), Mayo Clinic (Mayo), and University of Utah (UU) 

(Supplementary Methods). The USC GWAS consisted of four case-control studies (Los 

Angeles SEER (16), Seattle/Detroit SEER (17), University of British Columbia, University 

of Alabama at Birmingham) and two cohort studies (the Multiethnic Cohort Study (MEC) 

(10) and the Melbourne Collaborative Cohort Study (18)). The Mayo Clinic study included 

cases and controls from Mayo Clinic and Washington University (19).

Genotyping and Imputation—Cases and controls were genotyped at each center and 

imputation was performed using IMPUTE2 (20) or Beagle (21) with 1KGP as the reference 

panel. A description of each of the EA studies, genotyping platforms and methods, as well 

as imputation and quality control procedures are provided in the Supplementary Methods.

Statistical Analysis—Each study analyzed their data separately using unconditional 

logistic regression, adjusting for age, sex, and PCs (Supplementary Methods) (14). Data for 

500 Kb around each of the eight loci were extracted from each center. Summary statistics 

were meta-analyzed using a fixed effects model weighted by the inverse standard error in 

METAL (22).
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Assigning Significance Levels

The goal of our statistical analysis was two-fold: 1) to enhance the localization of the 

regions found to be genome-wide significant in the previous studies in Europeans using 

combined AA-EA meta-analyses; and 2) to search for new associations in regions within −/

+ 250 kb of these index SNPs. Accordingly, within each of the eight regions of interest, 

SNPs (both typed and imputed) were classified into two groups: Group A SNPs (r2≥0.50 

with index estimated in 1KGP EUR populations) and Group B (r2<0.50). For Group A 

SNPs, we used region-wide significance as our type I error rate (alpha-level), but for Group 

B SNPs, we required a more stringent experiment-wide significance across all regions. We 

were less stringent in our choice of criteria for statistical significance for the Group A SNPs 

because of the prior knowledge of association of risk with the more strongly correlated 

Group A SNPs.

Alpha-levels for each region were separately derived for the two groups of SNPs using 

permutation testing. To achieve numerically stable results, 1,000 replicates randomly 

shuffling the case/control status of all samples while preserving the orginal case/control ratio 

were generated for Groups A and B SNPs within each region. For each replicate, we 

recorded the minimum p-value of all tested SNPs and regarded the 5th percentile of the 

1,000 minimum p-values as the permuation-based significance level for the Group A SNPs 

in that particular region. The minimum alpha-level for all Group A SNPs across the eight 

regions was 1.48×10−3. By contrast, the significance levels for Group B SNPs were found at 

the 0.625th percentile (0.05/8 × 100%= 0.625), a Bonferroni correction accounting for a total 

of eight regions. The significance levels for both groups across the eight regions are 

presented in Supplementary Table 2.

Combined Analysis in AA and EA Individuals

Summary statistics from the AA analysis and EA meta-analysis were meta-analyzed using a 

fixed effects model weighted by the inverse standard error using METAL (22). Region-

specific alpha-levels defined in the AA analysis were applied to the AA/EA combined meta-

analysis, as they are the most conservative. All r2 values presented in the results are 

calculated using European (EUR) and African (AFR) populations from 1KGP.

Genomic Annotation

In order to choose an efficient group of SNPs to move forward for functional annotation, we 

used the regions that replicated in AA population with the Group A criteria. We included 

SNPs that were correlated (r2≥0.50) with the most significant SNP in a 500 Kb region and 

within two orders of magnitude of the smallest p-value observed. To integrate chromatin 

biofeature annotations with our genotyping data in these regions, we used the R package 

FunciSNP (Bioconductor.org) (23). We selected publicly available datasets relevant to the 

development of the B-cell lineage, most closely representing MM pathogenesis. The 

following ENCODE datasets were employed to filter correlated SNPs that lie within putative 

enhancer regions with Gene Expression Omnibus (GEO) accession IDs: B-cells CD20+ 

RO01778 DGF Peaks (GSM1014525), B-cells CD20+ RO01778 DNase I HS Peaks 

(GSM1024765, GSM1024766), B-cells CD20+ RO01794 HS Peaks (GSM1008588), 

CD20+ (RO 01778) H3K4me3 Histone Mod ChIP-seq Peaks (GSM945229), CD20+ 

Rand et al. Page 5

Cancer Epidemiol Biomarkers Prev. Author manuscript; available in PMC 2017 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://Bioconductor.org


RO01794 H3K27ac Histone Mods by ChIP-seq Peaks (GSM1003459), CD20+ (RO 01794) 

H3K4me3 Histone Mod ChIP-seq Peaks (GSM945198), CD20+ CTCF Histone Mods by 

ChIP-seq Peaks (GSM1003474), CD20+ H2A.Z Histone Mods by ChIP-seq Peaks 

(GSM1003476), CD20+ H3K4me2 Histone Mods by ChIP-seq Peaks (GSM1003471). The 

combinations of these histone modifications were used to segment the genome in these 

ENCODE cell lines into active and poised promoter regions with or without DNase I 

hypersensitivity, active and poised enhancer regions with or without DNase I 

hypersensitivity, putative regulatory sites with open chromatin, and CTCF bound sites 

outside promoters and enhancers. SNPs that could be mapped to core regions (DNase 

hypersensitive sites) of putative non-coding regulatory regions (enhancers and promoters) 

were further subjected to analysis of transcription factor binding site disruptiveness using the 

R/Bioconductor package motifbreakR (24). To define other physical map features 

(transcription start sites, 5′ UTR, 3′UTR) we downloaded annotations from the February 

2009 release of the human genome (GRCh37/hg19) available from the UCSC genome 

browser (25). Finally, we used the highly conserved set of predicted targets of microRNA 

targeting at mircode.org (miRcode 11, June 2012 release) (26), and conserved high-quality 

microRNA target species from microRNA.org (June 2010 release) (27).

RESULTS

Race-specific Replication of Known Risk Regions

Among AAs, we replicated three of the previously published risk variants at p<0.05 (7p15.3, 

p=8.30×10−5; 17p11.2, p=1.60×10−2; 22q13.1, p=1.47×10−2, Table 1); four regions in total 

including 3p22.1. All previously reported risk variants were common among AAs (Table 1; 

Supplementary Figure 1). We had ≥90% power to detect the published effect size observed 

in AAs for six SNPs (rs4487645, rs4273077, and rs877529 were significant), and 73–80% 

power for the other two SNPs (Table 1). There were no statistically significant associations 

using Group B alpha-levels, although a marginally significant association was observed in 

the 6p21.33 region (rs190055148, p=1.37×10−6, r2=0.002 (1KGP EUR) and r2=0.06 (1KGP 

AFR) with the index marker rs2285803) (Supplementary Figure 2).

In EAs, we replicated four variants at p<0.05 (3p22.1, p=4.42×10−3; 7p15.3, p=7.47×10−4; 

17p11.2, p=2.46×10−4; 22q13.1, p=4.31×10−4; Table 1). We had ≥90% power to detect the 

reported effect size for six SNPs (three of the six were significant at p<0.05) and 83–84% 

power for the other two SNPs (rs4273077 was significant) Table 1. No statistically 

significant Group B SNPs were observed. The previously reported locus 2q12.3 (8) was not 

associated with MM risk in either AA or EA subjects.

Race-specific results for all regions are provided in Supplementary Tables 3, 4 and 

Supplementary Figure 2.

Combined Analysis in AA and EA Individuals

In an attempt to better localize the region harboring a functional variant, summary statistics 

from the AA and EA studies were meta-analyzed for seven of the eight published risk 

regions. The HLA region on chromosome 6p21.33 was excluded from the meta-analysis 
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because of extreme sensitivity to population stratification due to race-specific extended 

haplotypes and underlying LD patterns requiring greater SNP density than available here for 

interpretable results (28).

We found statistically significant associations for Group A SNPs that were in LD with the 

index SNP (r2≥0.50) in all regions except 2q12.3 and 3q26.2 (Table 1; Supplementary 

Figure 3); however there were no significant associations for Group B SNPs in any region. 

Five of the eight index SNPs and three of the most significant SNPs from the combined 

analysis were more common among individuals of African compared to those of European 

ancestry, with rs1052501 showing the largest difference (RAF in AAs 0.63, in EAs 0.22) 

(Table 1; Supplementary Figure 1). Below we describe the most significant associations and 

functional annotation in the four regions that replicated in the AA population with the Group 

A criteria.

3p22.1

Variant rs143531651 was the most significantly associated SNP (OR=1.26, p=2.02×10−5) 

and was correlated with the index SNP only in EA populations (AA RAF=0.11, r2=0.02, EA 

RAF=0.17, r2=0.79; Table 1). In this region, all the significant correlated variants cluster 

within the gene body of ULK4, which encodes the serine-threonine protein kinase. Among 

these are two missense variants of unknown significance, rs17215589 (OR=1.20, 1.04×10−3) 

and rs35263917 (OR=0.84, p=1.39×10−3). In addition, there are three SNPs, rs73830585 

(OR=1.19, p=1.60×10−3), rs73071261 (OR=1.19, p=1.61×10−3) and rs55916855 (OR=0.83, 

p=7.35×10−4) located within DNase I hypersensitive sites in the active promoter of ULK4. 

Variants rs73830585 and rs55916855 disrupt EGR1 and INSM1 transcription factor binding 

sites, respectively (Figure 1, Supplementary Tables 5, 6).

7p15.3

Variant rs12540021 (OR=1.31, p=1.27×10−7), located in intron 79 of DNAH11 and 

downstream of CDCA7L was the most significantly associated SNP in this region and was 

correlated with the index SNP in AAs and EAs (r2=0.71 and r2=0.67, respectively). The 

eight top correlated SNPs in this region are clustered around a solitary enhancer toward the 

3′ end of the DNAH11 gene region, and 3′ of the CDCA7L transcription termination site. 

DNAH11 encodes for a ciliary outer dynein arm protein and CDCA7L encodes a cell-cycle 

gene that is expressed in malignant plasma cells (29). The index SNP in this region, 

rs4487645 (OR=1.28, p=4.00×10−7), is situated in the DNase I hypersensitive site in the 

center of the active enhancer, where transcription factors are most likely to be bound. The 

risk allele of rs4487645 (C), disrupts GATA1, GATA2 and GATA5 motifs. Thus, the 

correlated variants in 7p15.3 overlap putative regulatory features consistent with an active 

enhancer region (Figure 1; Supplementary Tables 5, 6).

17p11.2

rs34562254 (OR=1.32, p=2.93×10−7) was the most significantly associated SNP in this 

region in the combined analysis and in the race-specific analyses (Table 1; Supplementary 

Tables 3, 4). This variant occurs roughly equally in both populations (MAFAA= 0.13; 

MAFEA = 0.11) but is more highly correlated with the reported index SNP in EA (r2=0.90) 
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compared to AA (r2=0.33, Table 1) individuals. This missense variant (Pro251Leu) is 

located in exon 5 of TNFRSF13B, a lymphocyte-specific tumor necrosis factor receptor that 

interacts with the NF-κB pathway and regulates B-cell development (30, 31). This variant is 

predicted to be possibly damaging in PolyPhen2 (32) with a score of 0.72 (sensitivity=0.86, 

specificity=0.92), while it is labeled as a tolerated mutation in SIFT (33). Variant 

rs34562254 is conserved across some species (the rhesus, dog, and elephant), but is not 

present in others (mouse or zebrafish).

22q13.1

Variant rs139425 (OR=1.21, p=8.41×10−7) was the most significantly associated SNP in this 

region and is strongly correlated with the reported index SNP in EAs but not AAs (r2=0.95 

and r2=0.18, respectively). This SNP did not overlap any biofeatures of interest. The top 35 

SNPs in this region cluster within 10kb in and around the promoter and proximal intronic 

enhancers of of the polycomb group gene CBX7, which are epigenetically marked active 

regions. CBX7 is a tumor supressor gene which is down-regulated in multiple cancers (34, 

35). Seven correlated SNPs overlap with DNase I hypersensitive sites within the 

aformentioned promoter and enhancer regions (Supplementary Table 6): rs877529 and 

rs139398 are located within the downstream enhancers; rs877529 disrupts several high-

confidence binding sites including ETS1, ETV4 and PAX6; rs1005300, rs6001455, 

rs5995688, rs12158877 and rs139405 are situated in the promoter region; and the reference 

allele of rs1005300 disrupts KLF1/KLF4 binding sites (Figure 1).

DISCUSSION

This is the first study to examine the eight published GWAS risk regions for MM in AA 

individuals. We statistically significantly replicated four of the EA reported regions in the 

AA-only analysis, suggesting that these risk regions are shared across populations. In an 

AA-EA meta-analysis, we identified SNPs in seven of the eight reported regions that were 

more significant than the index SNP; five were statistically significant using Group A 

criteria. The differential LD between AA and EA populations in these combined analyses 

allows for a finer resolution of the signal and suggests that these alternate SNPs may be 

better proxies of the functional alleles. The genomic annotation of these variants highlights 

potential functional impact within enhancer regions, promoter regions, and protein coding 

sequence for some of the variants.

We were able to utilize information from the differential LD in the two populations as well 

as the genomic annotation to identify the regions we believe to be the most promising for 

functional follow-up. Three regions have SNPs that are significantly associated with disease 

risk and functional annotation that is highly suggestive of regulatory function (3p22.1, 

7p15.3, 22q13.1). Both the race-specific and combined analyses identified the missense 

variant rs34562254 (Pro251Leu) as the most significant SNP in the fourth region (17p11.2). 

This SNP is located in TNFRSF13B and falls centromeric to a common 17p deletion 

observed in MM cases (36). TNFRSF13B encodes a protein that is a lymphocyte-specific 

member of the tumor necrosis factor (TNF) receptor superfamily that interacts with the NF-

κB pathway, critical for B-cell activation and survival and proliferation of MM neoplastic 
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cells (37, 38), and the target of proteosome inhibitors used in standard MM therapy regimens 

(38).

In 7p15.3, we identified eight variants that were moved forward for functional annotation. A 

single SNP, rs4487645, was mapped to DNase I hypersensitive region in the core of a 

putative enhancer with active histone modifications. This SNP is predicted to disrupt three of 

a highly related family of transcription factor binding motifs with strong effects, including 

GATA1, GATA2, and GATA5 transcription factors (match threshold p<10−4) involved in T-

cell and hematopoietic stem cell differentiation (Supplementary Table 5; Supplementary 

Methods). Weinhold et. al. recently generated expression quantitative trait loci (eQTL) data 

on malignant plasma cells in 848 MM patients and found that the strongest association was 

for rs4487645, which showed cis-regulation of CDCA7L (29). This same variant and its 

enhancer were annotated in our data as a potentially functional candidate in B-cells. Thus, 

our approach utilizing differential LD patterns to identify SNPs for functional annotation 

may identify truly functional disease correlates even when expression data are unavailable or 

lack sufficient statistical power.

This study includes the largest existing collection of AA MM cases and controls and is the 

first to examine previously reported risk regions in this diproportinately impacted group. 

One limitation is that AA cases and controls were genotyped on different arrays with only a 

small number of overlapping SNPs (n=188,835 SNPs genome-wide) which limited our 

ability to identify novel variants (Group B SNPs) and to examine the overlap in the HLA 

region. However, we performed rigorous QC on genotyped SNPs, which allowed us to 

impute cases and controls together, thereby providing more accurate imputed data. 

Nevertheless, there were not a large number of genotyped SNPs in each region which made 

imputation challenging. For example, in the 17p11.2 and 22q13.1 regions, over half of the 

imputed SNPs for the AA’s with a MAF>1% were excluded due to poor quality scores 

(INFO <0.8 in IMPUTE2, Supplementary Figure 2 Supplementary Table 1).

Another limitation of this study was the relatively small sample size of the race-specific 

analyses; however, power was greatly enhanced by combining the data across ancestry 

groups which leveraged the differential LD in these two populations in an attempt to more 

accurately approximate the true signal. For example, in the EA analysis, we had 28% power 

to detect an OR of 1.25 for an allele frequency of 10% while in the combined analysis, 

which more than doubled the number of cases and added more than 7000 additional 

controls, we had 89% power to detect this same effect size using the minimum alpha-level 

for Group A SNPs (1.48×10−3, Supplementary Table 2). Because MM is a rare disease 

(~6/100,000 average annual age-adjusted incidence rate) with a relatively poor 5-year 

survival rate (~46%), it is challenging to accrue large numbers of patients necessary for 

detecting associations with small to moderate magnitude of risk. Therefore, unlike similar 

studies of common solid tumor malignancies, it is often difficult to achieve adequate 

statistical power. However, we were able to improve power by including a a large number of 

controls from pre-existing GWAS in AA men and women.

Although we did not conduct a combined analysis of the HLA region due to its extreme 

sensitivity to population stratification and long-range LD, we did observe signals in this 
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region for both AAs and EAs that differed by race, as expected. A possible independent 

signal (rs190055148, p=1.37×10−6, r2=0.06 with index in 1KGP AFR and r2=0.002 in EUR) 

was observed in AAs that will require confirmation in a larger sample.

In this study, we replicated associations in four of eight published risk regions in AAs and 

five in the AA-EA combined analysis, which suggests common shared functional variants 

across racial groups. We identified four regions that are promising for functional follow-up, 

including 17p11.2, where the most significant SNP in the combined analysis is a missense 

variant. Traditional large-scale discovery efforts in AA populations will be required to better 

understand the degree to which there is a genetic basis underlying the excess risk of MM in 

this group.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Genomic annotation of the 3p22.1, 7p15.3, and 22q13.1 regions
UCSC browser views showing wiggle tracks from ENCODE data for CD20+ B-cells from 

two cell lines, RO01778 and RO01794. The peak calls from these data were used to segment 

the genome into non-coding functional regions as detailed in the inset at bottom right. a) 

Region 3p22.1 detailing the 5′ end of the ULK4 gene, where high-confidence SNPs overlap 

the central regulatory core region of the active promoter. b) Overview of the 7p15.13; an 

enhancer with active histone marks within intron 79 of DNAH11 as described in the text. c) 

Overview of region 22q13.1 where several SNPs overlap with the promoter and downstream 
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enhancers of CBX7. DHS: DNase I hypersensitive site, CTCF: CTCF bound region, ENH 

[active]: enhancer with H3K27 acetylation (K27Ac), ENH+DHS: DNase I hypersensitive 

region found within an active enhancer, PROM [active]: promoter with H3K27 acetylation, 

PROM+DHS: DNase I hypersensitive region found within an active promoter. Other 

abbreviations: DGF: digital DNase I footprinting, K4M1: H3K4 mono-methylation, K4M2: 

H3K4 dimethylation, H2A.Z: H2A.Z histone modification (not used for segmentations).
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